高分子板材风门 高分子插接风门 矿用聚氯乙烯风门
高分子板材风门 高分子插接风门 矿用聚氯风门
高分子板材风门高分子插接风门矿用聚氯风门
高分子板材风门产品特点
1、提高耐磨性。提高分子量聚Zui引人注目的一个性能是它具有极高耐磨性,这一性能有许多工程应用中都是十分宝贵的。在所有塑料中,其耐磨性是的,就连许多金属材料(如碳钢、不锈钢、青铜等)的有规则磨性也不如它。随着聚分子量的升高,这种材料就越耐磨。
2、极高的抗冲击性能。超高分子量聚的抗冲强度和它的分子量有关,分子量低于200万时,随分子量增长,冲击强度,在200万左右达到一峰值,这时峰后,分子量 再升高冲击强度反而会下降。这是由于分子链非常时妨碍了它的光晶作用,使在大分子中存在大的无定形区因而可以吸收较大的冲击能量。
3、很低的磨擦系数。超高分子量聚非常耐磨,而且磨擦系数低、自润滑性良好,是一种理想的轴承轴套、滑块、衬里材料。
使用超高分子量聚作为设备的磨擦部件,除可提高耐磨寿命外,还可收到节能效果。
4、良好的耐化学腐蚀性。超高分子量聚乙具有良的耐化学腐蚀特性,除浓、浓硫酸外,它在所有的碱液、酸液中都不会受腐蚀,并且可在温度(80℃的浓中应用,在<20%的、<75%的硫酸中也是稳定的,它对水、液体洗涤也很稳定。)
但是,超高分子量聚在芳香料或卤代料化合物中(特别是在温度较高的状况下)极易溶胀,因此,应用时要特别注意。
5、很低吸水性。超高分子量聚吸水率很低,它几乎是不吸水,在水中不膨胀,比尼龙的吸水性小得多。
6、热学性能。按ASTM(负荷4.6kg/cm2)方法的测定,热变形温度为85℃,在较小的负荷下,使用温度可达90℃,在特殊情况下,允许在更高的温 度下使用,由于超高分子量聚是一种韧性好的材料,因而它的耐低性能也非常优异,在-269℃低温下,仍具有一定的延展性,而没有脆裂迹象。
7、电性能。超高分子量聚在很宽的温度范围内,都具有很优良的电性能,它的体积电阻达10-18CM,击穿电压达50KV/mm,介电常数2.3。在较宽的温度及频率范围内,它的电性能变化极小。在耐热温度范围内,很适宜用作电气工程的结构材料和纸厂的材料。
8、无毒性超高分子量聚无味、无毒、无臭,本身无腐蚀性,具有生理循性和生理适应性,美国食品与药品管理局(FDA)和美国农业部(USDA)允许它用于与食品和药品接触的场合。
高分子板材风门高分子插接风门矿用聚氯风门
高分子板材风门产品特点
1、提高耐磨性。提高分子量聚Zui引人注目的一个性能是它具有极高耐磨性,这一性能有许多工程应用中都是十分宝贵的。在所有塑料中,其耐磨性是的,就连许多金属材料(如碳钢、不锈钢、青铜等)的有规则磨性也不如它。随着聚分子量的升高,这种材料就越耐磨。
2、极高的抗冲击性能。超高分子量聚的抗冲强度和它的分子量有关,分子量低于200万时,随分子量增长,冲击强度,在200万左右达到一峰值,这时峰后,分子量 再升高冲击强度反而会下降。这是由于分子链非常时妨碍了它的光晶作用,使在大分子中存在大的无定形区因而可以吸收较大的冲击能量。
3、很低的磨擦系数。超高分子量聚非常耐磨,而且磨擦系数低、自润滑性良好,是一种理想的轴承轴套、滑块、衬里材料。
使用超高分子量聚作为设备的磨擦部件,除可提高耐磨寿命外,还可收到节能效果。
4、良好的耐化学腐蚀性。超高分子量聚乙具有良的耐化学腐蚀特性,除浓、浓硫酸外,它在所有的碱液、酸液中都不会受腐蚀,并且可在温度(80℃的浓中应用,在<20%的、<75%的硫酸中也是稳定的,它对水、液体洗涤也很稳定。)
但是,超高分子量聚在芳香料或卤代料化合物中(特别是在温度较高的状况下)极易溶胀,因此,应用时要特别注意。
5、很低吸水性。超高分子量聚吸水率很低,它几乎是不吸水,在水中不膨胀,比尼龙的吸水性小得多。
6、热学性能。按ASTM(负荷4.6kg/cm2)方法的测定,热变形温度为85℃,在较小的负荷下,使用温度可达90℃,在特殊情况下,允许在更高的温 度下使用,由于超高分子量聚是一种韧性好的材料,因而它的耐低性能也非常优异,在-269℃低温下,仍具有一定的延展性,而没有脆裂迹象。
7、电性能。超高分子量聚在很宽的温度范围内,都具有很优良的电性能,它的体积电阻达10-18CM,击穿电压达50KV/mm,介电常数2.3。在较宽的温度及频率范围内,它的电性能变化极小。在耐热温度范围内,很适宜用作电气工程的结构材料和纸厂的材料。
8、无毒性超高分子量聚无味、无毒、无臭,本身无腐蚀性,具有生理循性和生理适应性,美国食品与药品管理局(FDA)和美国农业部(USDA)允许它用于与食品和药品接触的场合。
水箱水位无法稳定,易断水或溢水浪费这主要是水箱浮球阀工作不正常造成的,原设计是一道浮球阀,由于巡检和日常检查不到位导致浮球阀很容易损坏,可以进行技术改造,设置两道浮球阀,上下布置高度差为5mm,提高浮球阀的可靠性,保持水箱水位稳定在2米的位置。这样就确保了增湿塔的供水稳定,工作稳定,减少对系统窑磨工况的影响。增湿塔壳体开裂主要原因是焊接点焊接质量差造成的,由于焊接质量差壳体在此处可能产生应力集中导致在焊接处发生撕裂或开口并在高温高压作用下加剧损坏。
展开全文
相关产品